\[ \frac{P(s)}{(s^2+a)(s+b)} = \frac{As+B}{s^2+a} + \frac{C}{s+b} \]
例:\(\frac{s+7}{(s^2+5)(s+3)}\) を分解
仮定:\(\frac{s+7}{(s^2+5)(s+3)} = \frac{As+B}{s^2+5} + \frac{C}{s+3}\)
通分して整理:\(s+7 = (As+B)(s+3) + C(s^2+5)\)
展開:\(s+7 = As^2 + 3As + Bs + 3B + Cs^2 + 5C\)
整理:\(s+7 = (A+C)s^2 + (3A+B)s + (3B+5C)\)
係数比較(\(s^2\) の係数):\(0 = A+C\)
係数比較(\(s\) の係数):\(1 = 3A+B\)
係数比較(定数項):\(7 = 3B+5C\)
連立方程式を解く:\(A = -C\)、\(B = 1-3A\)、\(7 = 3B+5C\)
代入計算:\(A = -\frac{2}{7}\)、\(B = \frac{13}{7}\)、\(C = \frac{2}{7}\)
結果:\(\frac{s+7}{(s^2+5)(s+3)} = \frac{-\frac{2}{7}s + \frac{13}{7}}{s^2+5} + \frac{\frac{2}{7}}{s+3}\)